Divergences Of Curls Are Zero
The curl of a vector field V is:
Its divergence is:
which equals zero.
(∂yVz - ∂zVy,
∂zVx - ∂xVz,
∂xVy - ∂yVx).
Its divergence is:
(∂x∂yVz - ∂x∂zVy) +
(∂y∂zVx - ∂y∂xVz) +
(∂z∂xVy - ∂z∂yVx)
which equals zero.
Comments
Post a Comment